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Outline of Presentation

• Overview of Petroleum Consumption - How Much Do We 
Actually Use

• How Does Tribology (Friction and Wear) Fit Into the 
Equation
– If we get rid of all friction, how big of an impact will a ‘frictionless’ 

engine have on petroleum consumption
– If We reduce friction by x%, how much petroleum can we save?

• What’s the Difference Between Commercial and Military 
Applications
– Driving/Operational Driving Schedules

• What’s Being Done (Research) to Reduce Petroleum 
Consumption, or, Improve Energy Security?
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World Energy Production & Consumption 
1 QUAD/yr ~ 0.5 MBBL/day

• World Energy Production (All Sources) 460 Quads (2005)
• US Energy Production (All Sources) 72 Quads (2007)

– 16% of World Production

• World Energy Consumption (all sectors) 463 Quads (2005)
• US Energy Consumption (all sectors) 101 Quads (2007)

– 22% of World Consumption

• World Petroleum Production 81 MBBL/day (2007)
• US Petroleum Production 6.9 MBBL/day (2007)

– <9% of World Production

• World Petroleum Consumption (all uses) 85 MBBL/day (2006)
• US Petroleum Consumption 21 MBBL/day (2006)

– 25% of World Consumption
http://www.eia.doe.gov/emeu/aer/pdf/aer.pdf
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US Energy Flow (2007)
102 QUADs

• QUADrillion (1015) BTUs per year
• 1 QUAD equivalent to 0.47 million bbl crude oil/day

– 39.82 QUAD Petroleum - 18 million bbl/day

http://www.eia.doe.gov/emeu/aer/pdf/pages/sec1_3.pdf

13.7  Mbbl/day
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Majority of Oil Consumed by ON-ROAD 
Vehicles - 10 to 11 MBBL/Day for Cars, Light 

Trucks, and Heavy Trucks
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Federal Government is Largest 
Single Consumer of Petroleum

• In FY 2004; federal agencies accounted for 1.9 % of US 
petroleum consumption 
– DoD - 93% of US Government Consumption
– DoD - equivalent to 360,000 bbl/day

• Cost of Petroleum 
– Commercial/civilian (large volume/low price)

• $50 to $ 150/bbl
• $2.00-$4.50/gal at pump

– Military (lower volume / high price)
• $50 to $150/bbl
• $20-$30/gal delivered (aircraft)
• $100-$600/gal delivered in field (ground vehicles)

13 August 2009 6
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How Much of the 10-11 MBBL/day of Petroleum Used 
for On-Road Vehicles is Lost to Friction? - More 

Energy is Lost to Friction Than is Delivered to the 
Wheels

• Energy Map- Passenger Vehicle EPA Cycle
– Roughly 10% of energy input consumed by 

friction
– ≈1 million barrels/day lost to friction in 

transportation

Energy In

100%

Indicated HP

35%

Brake HP

23%

At Wheels

9.5%

Exhaust

35%

Engine Cooling

30%

Other Engine Friction

0.4%

Piston Assembly

2.8%

Valve Train

1.3%

Bearings

1.0%

Seals

0.5%

Air Pumping

6%

Others

1.6%

Transmission

2.0%

Braking

2.0%

Coast/Idle

4.0%

Axle

1.6%

Accessories

Oil Pump - 0.5%

Air Pump – 0.1%

Water Pump - 0.1%

Fuel Pump - 0.1%

Power Steering – 0.5%

Cooling Fan – 0.5%

Alternator – 0.5%

Viscous Loss – 1.35%

Friction Forces – 0.95%

Blowby – 0.5% Aero Drag

4.0%

Tires

5.5%

15% of IMEP
(Indicated Mean Effective 
Pressure – HP normalized 
to engine displacement)



UNCLAS: Dist A. Approved for public release

500

700

900

1100

1300

1500

1700

1900

0 500 1000 1500 2000

Load/IMEP (kPa)

Sp
ee

d 
(rp

m
)

1 (52%)

2 (3%)

3 (4%)

4 (15%) 5 (8%)

6 (6%) 7 (8%) 8 (5%)

Weighting factor

Detailed Studies of Heavy-Truck Friction Losses Based 
on Mechanistic Models of Boundary and Hydrodynamic 

Friction Predicted Impact of Lowering Boundary 
Friction and Lubricant Viscosity on Fuel Economy 

Rocker bushing *
Rocker tip to valve *
Pushrod to rocker interface *

Piston pin bearing *
Rings *
Piston Skirt *

Cam - follower interface *
Cam bearings *
Follower - pushrod interface *
Timing drive

Journal bearings
Crankshaft windage

Oil Pump
Fuel injection system

Crankshaft main bearings
Main seals *

* interface considered in current study

• FMEP calculated at 8 different modes and 
weighted to predict effect on fuel consumption 
for a HD driving cycle

FCSF                = 
(Fuel Consumption Scaling Factor)

IMEP + ΔFMEP
IMEP
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Role of Boundary and Hydrodynamic 
Lubrication Regimes
- Tribological System

• Different regimes of 
lubrication depending on the 
degree of contact between 
sliding surfaces

• Boundary lubrication 
characterized by solid-solid 
contact – asperities of mating 
surfaces in contact with one 
another

• Contrast boundary lubrication 
with full-film lubrication in 
which mating surfaces are 
separated by a film.

• In between, mixed lubrication 
occurs.
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Boundary and Hydrodynamic Friction: 
Model Impact on FMEP and Wear 

Severity

• Total FMEP is the sum of the Asperity friction and the hydrodynamic friction
– Boundary FMEP decreases with increasing lubricant viscosity – shifting from BL to ML regime
– Hydrodynamic FMEP increases with increasing viscosity

Piston FMEP versus Viscosity Grade
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Modeling the Impact of Friction on Fuel 
Efficiency and Identifying Critical 

Components - HD Diesel• Prediction/Modeling of Fuel 
Savings

– Systematic studies on the effect of 
boundary friction and oil viscosity on fuel 
efficiency

– Up to 1.3 % fuel economy improvement 
by low friction additives and/or coatings

– 3-4% fuel economy improvement by 
reducing boundary friction and reducing oil 
viscosity

– Additional 2-4% fuel economy gains in 
transmission and differential/axle

Piston Rings and Skirt: Impact of Reduced Asperity Friction on Fuel Savings (gals) 
@ 1000 hrs Operation
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‘HOWEVER, ... Your mileage 
may vary…’

• Standard disclaimer ‘Your mileage may vary’ on EPA mileage 
estimates is used for a very valid reason, and this is especially true 
for estimating the impact of friction on the fuel efficiency of military 
vehicles
– Parasitic frictional losses depend strongly on engine conditions 

(load and speed).  Highest losses (percentage of IMEP) occur at 
low speed, low load conditions

13 August 2009 12

• There are significant differences between 
civilian on-road driving cycles and military 
driving cycles
• High percentage of time spent near 

idle
• Off-road (high load) and low speed 

conditions
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Military Driving Cycle Significantly 
Different from On-Road Civilian Cycle

• Wheeled Ground Vehicle (80-85 % idle; 25 mph avg.)

13 August 2009 13

Patterns of Use M998 Baseline M998 w Armor; w A/C
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Impact of Driving Cycle on the 
Effectiveness of Low-Friction 
Technologies to Improve Fuel 

Efficiency

• Low friction technologies at high Idle, low speed, high 
load conditions (lower right) have greater impact on fuel 
consumption

13 August 2009 14

On-Road FTP 70 % Idle, Mode 2 & 3
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Friction Reduction Technologies Have 
Greater Impact on Fuel Economy at 

High Idle Conditions

• Impact of Idle on the fuel consumption for a 90 % 
reduction in boundary friction

13 August 2009 15
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Fuel Efficiency - Summary

• 13-14 Mbbl/day consumed for transportation
• US military consumes 2% - approx 360,000 bbl/day

– Cost of fuel delivered to theatre is high ($100-$600/gal)

• Rule-of-Thumb
– Approx 10% of fuel consumed (on-road) is lost to engine friction
– Another 5% lost to driveline friction

• Driving cycle significantly impacts the efficacy of low-
friction technologies to improve fuel economy
– High idle modes are impacted more by low-friction technologies 

13 August 2009 16
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Additional Comments – Viscosity 
& Durability

• Use of low-viscosity lubricants, while effective in reducing 
fuel consumption, will increase contact severity
– Need for improved wear-resistant materials, coatings and anti-

wear additives

13 August 2009 17
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Additional Comment – Low Friction 
Technologies – Can We Achieve 30, 
60, or 90 % Reduction in Friction?

• Multiple approaches to reduce friction – materials, 
coatings, additives – requires lab, component, and 
system testing.

13 August 2009 18
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Reliability Under Severe Tribological 
Environments Critical to Accomplishing 

Military Missions

• Application of advanced lab techniques to characterize 
scuffing phenomena and investigate the impact of 
additives on delaying the onset of scuffing.

13 August 2009 19
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Impact of Additives on Scuffing

• Impact of additives and additive concentration on the 
scuffing load of formulated mil-spec 15W/40 oil, and 
unformulated basefluid

13 August 2009 20
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Conclusions

• Parasitic friction mechanisms (oil shearing and metal-to-metal asperity friction) consume 
approximately 10% of fuel used in transportation.  Another 5% is consumed by drivetrain friction.

• The losses can be significantly greater for vehicle operating cycles that involve long periods of 
idle, where power is required for hotel power.

• Application of low-friction boundary-film technologies will lower fuel consumption by 1% for an on-
highway commercial truck.  Greater fuel savings (up to 2%) can be realized for high-idle driving 
cycles that involve off-road conditions.

• The application of low-friction technologies that lower friction in the boundary-lubrication regime 
(Stribeck curve) enables the use of low-viscosity fluids resulting in potential fuel savings up to 3-
4% for commercial driving cycles – provided suitable low-friction technologies are available.

• While low-viscosity lubricants are beneficial in reducing parasitic friction losses, caution must be 
exercised to offset the increased contact severity and potential durability/reliability issues 
associated with increased contact loads that occur with low-viscosity fluids.

• Potential solutions to improve fuel economy, such as lubricant additives and low-friction 
materials/coatings, have been identified in lab studies, and need further effort to implement them 
industrially.

• The use of advanced additives in formulated mil-spec lubricants has been observed to increase 
the scuffing resistance in lab-based tests and may represent a potential solution to enhancing the 
survivability of ground vehicles under extreme tribological environments.

• High idle drive cycles incur the greatest amount of parasitic friction losses and are 
influenced more by low-friction technologies

13 August 2009 21
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